

Salmon live in vast, diverse, and dynamic environments. They are difficult to detect. The solution to the “forecasting problem” may not be better forecast math, but better means of coping with uncertainty.

Decision-making

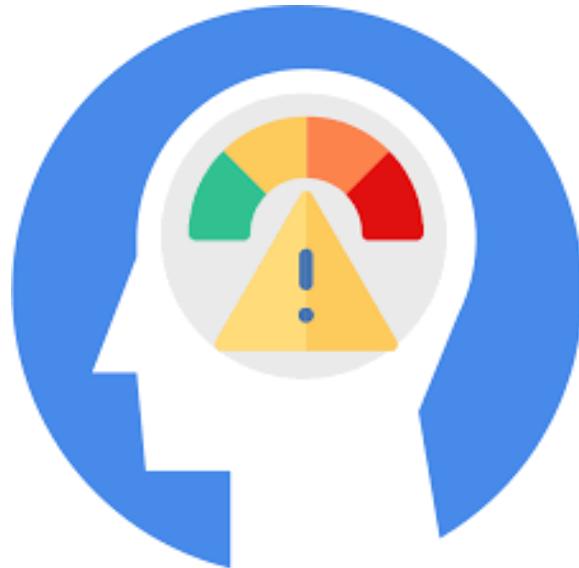
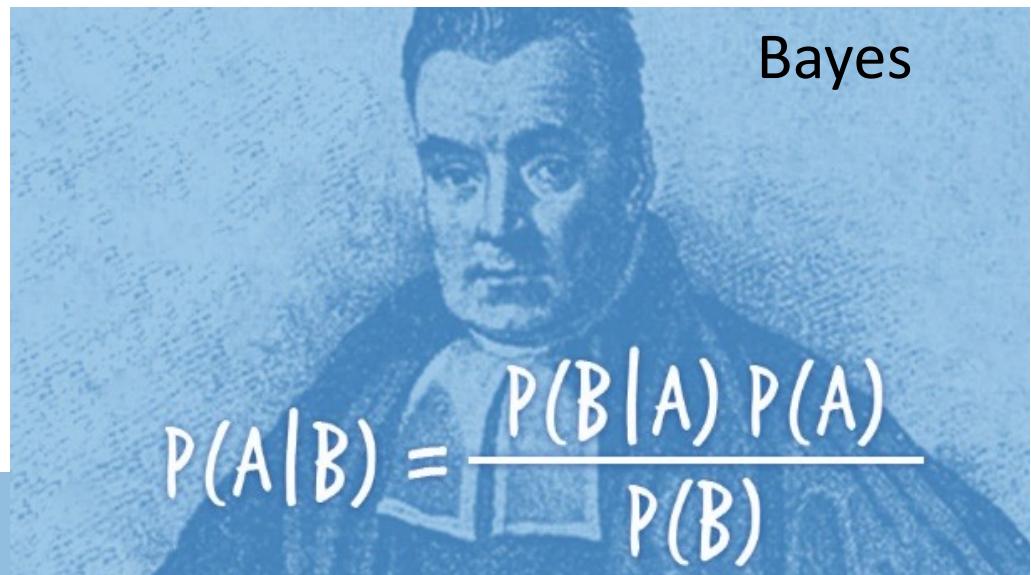



Table 1. Marginal probabilities of three levels of abundance and uncertainty in the forecast of abundance.

Abundance	Marginal Probability	Forecast		
		Low	Medium	High
Low	0.3	0.6	0.3	0.1
Medium	0.4	0.2	0.6	0.2
High	0.3	0.1	0.3	0.6

This year's forecast is *High*. What is the probability that the abundance is actually *Low*?

$$P(\text{Abundance} = L | \text{Forecast} = H) = \frac{P(\text{Forecast} = H | \text{Abundance} = L) P(\text{Abundance} = L)}{P(\text{Forecast} = H)}$$

$$= \frac{0.1 * 0.3}{0.1 * 0.3 + 0.2 * 0.4 + 0.6 * 0.3} = \\ \mathbf{0.103}$$

Table 1. Marginal probabilities of three levels of abundance and uncertainty in the forecast of abundance.

Abundance	Marginal Probability	Forecast		
		Low	Medium	High
Low	0.3	0.6	0.3	0.1
Medium	0.4	0.2	0.6	0.2
High	0.3	0.1	0.3	0.6

This year's forecast is *High*. What harvest rate should be implemented?

Table 2. Utilities reaped by a decision maker under all possible combinations of abundance and harvest decisions.

Harvest	Abundance			
		Low	Medium	High
Low	Low	80	40	10
Medium	Medium	30	80	80
High	High	0	30	100

Expected utility low harvest= $p(\text{low}) * 80 + p(\text{med}) * 40 + \text{high}(10)$

Expected utility med harvest= $p(\text{low}) * 30 + p(\text{med}) * 80 + \text{high}(80)$

Expected utility high harvest= $p(\text{low}) * 0 + p(\text{med}) * 30 + \text{high}(100)$

} Choose max

Norsys - Netica Application

norsys.com/netica.html

Zoom

NORSYS
SOFTWARE CORP.

Home Products Downloads Resources Site Map Order Corporate

Netica Application

Thermostat A

Copyright 1995 Brent Boerlage
Distributed by Norsys Software Corp.

Car Diagnosis 2

Copyright 1995-1998 Norsys Software Corp.
Electrical
Air
Fuel
Charging

Position

0	14.3
2 to 4	14.3
4 to 6	14.3
6 to 8	14.3
8 to 10	14.3
10	14.3

Velocity

-10 to -8	10.0
-8 to -6	10.0
-6 to -4	10.0
-4 to -2	10.0
-2 to 0	10.0
0 to 2	10.0
2 to 4	10.0
4 to 6	10.0
6 to 8	10.0
8 to 10	10.0

Bouncing Ball

Copyright 1997-2001 Brent Boerlage
Distributed with permission by Norsys Software Corp.

Netica is a powerful, easy-to-use, complete program for working with **belief networks** and influence diagrams. It has an intuitive and smooth user interface for drawing the networks, and the relationships between variables may be entered as individual probabilities, in the form of equations, or learned from data files (which may be in ordinary tab-delimited form and have "missing data").

Once a network is created, the knowledge it contains can be transferred to other networks by cutting and pasting, or saved in modular form by creating a library of nodes with disconnected links. Of course, the networks and libraries may be saved in files or printed out.